
COMPUTING PRACTICES

Edgar H. Sibley
Panel Editor An analysis of the distributions and relationships derived from the change

data collected during development of a medium-scale software project
produces some surprising insights into the factors influencing software
development. Among these are the tradeoffs between modifying an existing
module as opposed to creating a new one, and the relationship between
module size and error proneness.

SOFTWARE ERRORS AND COMPLEXITY:
AN EMPIRICAL INVESTIGATION

VICTOR R. BASILI and BARRY T. PERRICONE

1. INTRODUCTION
The identification of the various factors that have an
effect on software development is of prime concern to
software engineers. The specific focus of this paper is to
analyze the relationships between the frequency and
distribution of errors during software development, the
maintenance of the developed software, and a variety
of environmental factors. These factors include the
complexity of the software, the developer's experience
with the application, and the reuse of existing design
and code. Such relationships can provide an insight
into the characteristics of computer software and the
effects that an environment can have on the software
product. Such relationships can also improve the relia-
bility and quality with respect to computer software. In
an effort to acquire knowledge of these basic relation-
ships, change data for a medium-scale software project
were analyzed. (Change data include any documenta-
tion that reports an alteration made to the software for
a particular reason.)

The overall objectives of this paper are threefold:
first, to report the results of the analyses; second, to
review the results in the context of those reported by
other researchers [2, 3, 5, 6]; third, to draw some con-
clusions based on the first two objectives. The analyses
presented in this paper encompass various types of dis-

© 1984 ACM 0001-0782/84/0100-0042 75¢

tributions based on the collected change data. The most
important are the error distributions observed within
the software project.

1.1 Description of the Environment
The software analyzed in this paper is from a large set
of projects being studied in the Software Engineering
Laboratory (SEL). This particular project is a general-
purpose program for satellite planning studies. These
planning studies include mission maneuver planning,
mission lifetime, mission launch, and mission control.
The overall size of the software project was approxi-
mately 90,000 lines of code. The majority of the soft-
ware project was coded in Fortran for execution on an
IBM 360.

Although the system outlined here uses many algo-
rithms similar to those of the original SEL projects, it
still represents a new application for the development
group.

The requirements for the system kept growing and
changing, much more so than for the typical ground-
support software. Owing to the commonality of algo-
rithms from existing systems, the developers reused the
design and code for many algorithms needed in the
new system. Hence a large number of reused (modified)
modules became part of the new system.

An approximation of the software's life cycle is dis-
played in Figure 1. This figure only illustrates the ap-

42 Communications of the ACM January 1984 Volume 27 Number 1

Computing Practices

C H A N G E FORMS
I

CODING

D E S I G N
I

M A I N T E N A N C E I
A C C E P T A N C E

I I
• T E S T I N G ;

I I I I I I |
JAN. 1975 1976 1977 1978 1979 1980 1981

FIGURE 1. Life Cycle of Analyzed Software

proximate duration in time of the various phases of the
software's life cycle. The information relating the
amount of manpower involved with each of the phases
was not specific enough to yield meaningful results, so
it was not included.

1.2 Terms
This section defines the terms used in this paper. Please
note that many of these terms often denote different
concepts in the general literature.

Module: A module is defined as a named subfunction,
subroutine, or the main program of the software sys-
tem. Only segments that contained executable code
writ ten in Fortran were used for the analyses. Change
data from the segments that constituted the data blocks,
assembly segments, common segments, or utility rou-
tines were not included. However, a general overview
of the data available on these segments is presented in
Section 4.

There are two types of modules referred to in this
paper. The first type is denoted as modified. These are
modules that were developed for previous software
projects and then modified to meet the requirements of
the new project. The second type is referred to as new.
These are modules that were developed specifically for
the software project under analysis.

The entire software project contained 517 code seg-
ments, comprised of 36 assembly segments, 370 Fortran
segments, and 111 segments that were either common
modules, block data, or utility routines. Three hundred
seventy out of 517 code segments (72 percent of the
total modules) met the adopted module definition and
constituted the majori ty of the software project. Of the
modules found to contain errors, 49 percent were cate-
gorized as modified and 51 percent as new modules.

Number of Source and Executable Lines: The number of
source lines within a module refers to the number of
lines of executable code and comment lines contained
within it. The number of executable lines within a

module refers to the number of executable statements;
comment lines are not included.

Some of the relationships presented in this paper are
based on a grouping of modules by module size in in-
crements of 50 lines. This means that a module con-
taining 50 lines of code or less was placed in the mod-
ule size of 50, modules between 51 and 100 lines of
code into the module size of 100, and so on. The num-
ber of modules contained in each module size category
is given in Table I for all modules and for modules that
contained errors (i.e., a subset of all modules) with re-
spect to source and executable lines of code.

Error: An error is something detected within the exe-
cutable code that caused the module in which it oc-
curred to perform incorrectly (i.e., contrary to its ex-
pected function).

Errors were quantified from two viewpoints, depend-
ing upon the goals of the error analysis. The first quan-
tification was based on a textual rather than a concep-
tual viewpoint. This type of error quantification is best
i l lustrated by an example. If a " ." is incorrectly used in
place of a "+," then all occurrences of the "*" will be
considered an error, even if the "*"s appear on the
same line of code or within mult iple modules. The total
number of errors detected in the 370 software modules
was 215 contained within a total of 96 modules. This
implies that 26 percent of the modules analyzed con-
tained errors.

The second type of quantification measured the ef-
fect of an error across modules. Textual errors associ-
ated with the same conceptual problem were combined
to yield one conceptual error. If a procedure was called
with the same incorrect parameter list in mult iple mod-
ules, this would constitute mult iple textual errors but
only one conceptual error. This is done only for the
errors reported in Table II. There are a total of 155
conceptual errors. All other studies in this paper are
based upon the first type of error quantification.

Statistical Terms and Methods: All l inear regressions of
the data presented in this paper employ the least

TABLE I. Module Size Categories

Number All Modules Modules with Errors
of

Lines Source Executable Source Executable

0-50 53 258 3 49
51-100 107 70 16 25

101-150 80 26 20 13
151-200 56 13 19 7
201-250 34 1 12 1
251-300 14 1 9 0
301-350 7 1 4 1
351-400 9 0 7 0

>400 10 0 6 0

Total 370 370 96 96

January 1984 Volume 27 Number I Communications of the ACM 43

Computing Practices

squares principle as a criterion of goodness. (That is,
"choose as the 'best-fitting' line the one that minimizes
the sum of squares of the deviations of the observed
values of y from those predicted." [7])

Pearson's product moment coefficient of correlation
was used as an index of the strength of the l inear rela-
tionship, regardless of the respective scales of measure-
ment for y and x. This index is denoted by the symbol
r. The measure for the amount of variabil i ty in y ac-
counted for by l inear regression on x is denoted
as r2.

All of the equations and explanations for these statis-
tics can be found in [7]. It should be noted that other
types of curve fits were conducted on the data. The
results of these fits will be ment ioned later in the pa-
per.

2. BASIC DATA
The change data were collected over a period of 33
months (August 1977-May 1980). These dates corre-
spond in time to the software phases of coding, testing,
acceptance, and maintenance (Figure 1). The data col-
lected for the analyses are not complete since changes
were still being made to the analyzed software. How-
ever, enough data were viewed in order to make the
conclusions drawn from the data significant.

The change data were entered on detai led report
sheets, which were completed by the programmer re-
sponsible for implement ing the change. A sample of the
change report form is given in the Appendix. In gen-
eral, the form required that several short questions be
answered by the programmer implement ing the
change. These queries documented the cause of a
change in addit ion to other characterist ics and effects
at t r ibuted to the change. The majori ty of this informa-
tion was found useful in the analyses. The key informa-
tion used from the form was:

• The data of the change or error discovery.
• The description of the change or error.
• The number of components changed.
• The type of change or error.
• The effort needed to correct the error.

It should be ment ioned that the part icular change
report form shown in the Appendix is the most current
form but was not uniformly used over the entire period
of this study. In actuali ty there were three different
versions of the change report form; each form required
slightly different information. Therefore, for the data
that were not present on one form but that could be
inferred, the inferred value was used. An example of
such an inference is that of determining the error type.
Since the error description was given on all of the
forms, the error type could be inferred with a reasona-
ble degree of reliability. Data not incorporated into a
part icular data set used for an analysis were data for
which inference was deemed unreliable. Therefore, the
reader should be alert to the cardinali ty of the data set

used as a basis for some of the relationships presented
in this paper. A total of 231 change report forms were
examined for the purpose of this paper.

The quali ty of the change and error data was
checked in the following manner. First, the supervisor
of the project looked over the change report forms and
verified them (denoted by his or her signature and the
date). Second, when the data were reduced for analysis,
they were closely examined for contradictions. It
should be noted that interviews with the individuals
who filled out the change forms were not conducted.
This was the major difference between this work and
other error studies performed by the SEL, where inter-
views were held with the programmers to help clarify
questionable data. [2]

The review of the change data yielded an interesting
result. The errors due to previous correction attempts
were shown to be three times as common after the
form review process was performed, that is, before the
review process they accounted for 2 percent of the er-
rors and after the review process they accounted for 6
percent of the errors. These recording errors are proba-
bly at tr ibuted to the fact that the corrector of an error
did not know the error was due to a previous fix be-
cause the fix occurred several months earl ier or was
made by a different programmer.

3. RELATIONSHIPS DERIVED FROM DATA
This section presents and discusses the relationships
derived from the change data.

3.1 Change Distribution by Type
Changes to the software can be categorized as error

TABLE II. Number of Modules Affected by an Error
(data set: 211 textual errors; 174 conceptual errors)

Number Number of
of Modules

Errors Affected

155 (89%) 1
9 2
3 3
6 4
1 5

TABLE III. Number of Errors per Module (data set: 215 errors)

Number of Number of Errors
Modules New Modified per Module

36 17 19 1
26 13 13 2
16 10 6 3
13 7 6 4
4 1"* 3* 5
1 1"* 7

44 Communications of the ACM January 1984 Volume 27 Number 1

Computing Practices

TABLE IV. Effort to Correct Errors in the Three Most Error-Prone
Modified Modules

Average
Number of Effort to

Errors Correct
(15 total) (hrs)

Misunderstood or incorrect specifica- 8 24.0
tions

Incorrect design or implementation of a 5 16.0
module component

Clerical error 2 4.5

TABLE V. Effort to Correct Errors in the Two Most Error-Prone
New Modules

Average
Number of Effort to

Errors Correct
(12 total) (hrs)

Misunderstood or incorrect require- 8 32
ments

Incorrect design or implementation of a 3 0.5
module component

Clerical error 1 0.5

corrections or modifications (specification changes,
planned enhancements, and clarity and optimization
improvements). For this project, error corrections ac-
counted for 62 percent of the changes and modifica-
tions accounted for 38 percent. In studies of other SEL
projects, error corrections accounted for 40-64 percent
of the changes.

3.2 Error Distribution by Modules
Table II shows the number of modules that had to be
changed because of an error. (Note that these errors are
counted as conceptual errors.) It was found that 89 per-
cent of the errors could be corrected by changing only
one module. This is a good argument for the modulari ty
of the software. It also shows that there is not a large
amount of in terdependence among the modules with
respect to an error.

Table III shows the number of errors found per mod-
ule. The type of module is shown in addit ion to the
total number of modules found to contain errors.

The largest number of errors found were 7 (located in
a single new module) and 5 (located in 3 different mod-
ified modules and 1 new module). The remainder of the
errors were distr ibuted almost equally between the two
types of modules.

The effort associated with correcting an error is spec-
ified on the form as (1) 1 hour or less, (2) 1 hour to 1
day, (3) 1 day to 3 days, or (4) more than 3 days. These
categories were chosen because it is too difficult to col-
lect effort data to a finer granularity. To estimate the
effort for any part icular error correction, an average
time was used for each category; that is, assuming an 8-
hour day, an error correction in category (1) was as-
sumed to take 0.5 hour, in category (2) 4.5 hours, in

category (3) 16 hours, and in category (4) 32 hours.
The types of errors found in the three most error-

prone modified modules (* in Table III) and the effort
needed to correct them is shown in Table IV. If any
type contained error corrections from more than one
error correction category, the associated effort for them
was averaged. The fact that the majori ty of the errors
detected in a module is between one and three shows
that the total number of errors that occurred per mod-
ule is, on the average, very small.

The twelve errors contained in the two most error-
prone new modules (** in Table Ill) are shown in
Table V along with the effort needed to correct them.

3.3 Error Distribution by Type
Figure 2 shows the distr ibution of errors by type. It can
be seen that 48 percent of the errors was at tr ibuted to
incorrect or misinterpreted functional specifications or
requirements.

The error classification used throughout the Software
Engineering Laboratory is given below. The person
identifying the error indicates the class for each error.

A: Requirements incorrect or misinterpreted.
B: Functional specification incorrect or misinterpreted.
C: Design error involving several components.

1. Mistaken assumption about value or structure of
data.

2. Mistake in control logic or computat ion of an
expression.

D: Error in design or implementat ion of single compo-
nent.
1. Mistaken assumption about value or structure of

data.
2. Mistake in control logic or computat ion of an

expression.
E: Misunderstanding of external environment.
F: Error in the use of programming language/compiler .
G: Clerical error.
H: Error due to previous miscorrection of an error.

40-

~ MODIFIED
MOOULES

, , , , 0 ,~ 2~

I-
,. /--

' " o , I
S C.I C.2 O.I 0.2 E F G H A,C,I A,B D

¢3
t=J

la.I
O~
m

0
2O-

O~ r~

w I0-

FIGURE 2. Sources of Errors

January 1984 Volume 27 Number I Communications of the ACM 45

Computing Practices

The distribution of these errors by source is plotted
in Figure 2 with the appropriate subdistribution of new
and modified errors displayed. This distribution shows
that the majority of errors were the result of functional
specification (incorrect or misinterpreted). Within this
category, the majority of the errors (24 percent) in-
volved modified modules. This is most likely due to the
fact that the reused modules were taken from another
system with a different application. Thus, even though
the basic algorithms were the same, the specification
was not well-enough defined or appropriately defined
for the modules to be used under slightly different cir-
cumstances.

The distribution in Figure 2 should be compared to
the distribution of another system developed by the
same organization, shown in Figure 3(a) [3]. For a basis
of comparison, the categories in Figure 2 are mapped
into a classification scheme [Figure 3(b)] equivalent to

30%.

2 0 %

I0%"

36%

20%

EFFORT

27%

,,,\\N.•
B%,

I1% ~ 15%

3%
2 3 4

FIGURE 4. Effort Graph

Q MOOIF|ED
MODULES

O NEW
MODULES

I - I hr. or less
2- Ihr. to I day
3- Idoy to 3 doys
4 - more Tnon 3 i:lays

u~
/

u
(¢
ILl
..J
0
Z
o
z
M.
o
I-
bJ u
r r
bJ
O.

(/1
_J
¢.)
n-
td
.J (J
Z
0
Z
14.
0
I--
Z
LiJ ¢J
0¢
bJ O.

8 0

70.

60-

50-

40.

30.

20-

I 0 - ~ ~

0
Req Fnl

Spec

72%

10% 8%__]

O~j,~n Desi.n Long
- S2ngTe

~omp

TYPE OF ERROR

I% I%
Env Other

FIGURE 3(a). Sources of Errors on Other Nonclerical SEL Projects.

60'

5O

4O

30.

Req

4 4 %

2 2 . 5 %

Comp

0% , 0%, 0%
Long Env o ther

Type o f Erro¢

FIGURE 3(b). Sources of Nonclerical Errors on this Project

those for Figure 3(a) (eliminating the categories of G
and H within Figure 2). Figure 3 represents a typical
ground-support software system and was rather typical
of the error distributions for these systems. It is differ-
ent from the distribution for the system we are discuss-
ing in that the majority of the errors were involved in
the design of a single component. The reason for the
difference is that in ground-support systems, the design
is well understood and the developers have had a rea-
sonable amount of experience with the application.
Any reused design or code comes from a similar system
and the requirements tend to be more stable. An analy-
sis of the two distributions makes the differences in the
development environments clear in a quantitative way.

The percent of requirements and specification errors
is consistent with Endres' work [7]. Endres found that
46 percent of the errors he viewed involved the misun-
derstanding of the functional specifications of a mod-
ule. Our results are similar even though Endres' analy-
sis was based on data derived from a different software
project and programming environment. The software
project used in Endres' analysis contained considerably
more lines of code per module, was written in assembly
code, and was within the problem area of operating
systems. However, both of the software systems Endres
analyzed did contain new and modified modules. In
this study, of the errors due to the misunderstanding of
a module's specifications or requirements (48 percent),
20 percent involved new modules while 28 percent in-
volved modified modules.

Although the existence of modified modules can
shrink the cost of coding, the amount of effort needed
to correct errors in modified modules might outweigh
the savings. The effort graph (Figure 4) supports this
view: 50 percent of the total effort required for error
correction occurred in modified modules; errors requir-
ing one day to more than three days to correct ac-
counted for 45 percent of the total effort with 27 per-

46 Communications of the ACM]anuary 1984 Volume 27 Number 1

Computing Practices

cent of this effort attributable to modified modules
within these greater effort classes. Thus, errors occur-
ring in new modules required less effort to correct than
those in modified modules.

The similarity between Endres' results and those re-
ported here tend to support the statement that, inde-
pendent of the environment and possibly the module
size, the majority of errors detected within software are
due to an inadequate form or misinterpretation of the
specifications. This seems especially true when the soft-
ware contains modified modules.

3.4 Overall Number of Errors Observed
Figure 5 displays the number of errors observed in both
new and modified modules. It can be seen that errors
occurring in modified modules are detected earlier and
at a slightly higher rate than those in new modules.
One hypothesis for this is that the majority of the errors
observed in modified modules are due to the misinter-
pretation of the functional specifications. Errors of this
type would certainly be more obvious since they are
more blatant than those of other types and, therefore,
would be detected both earlier and more readily. (See
next section.)

3.5 Abs t rac t Error Types
The authors adopted an abstract classification of errors
that classified errors into one of five categories with
respect to a module: (1) initialization, (2) contral struc-
ture, (3) interface, (4) data, and (5) computation. This
was done in order to see if there existed recurring
classes of errors in all modules, independent of size.
These error classes are only roughly defined. It should
be noted that even though the authors were consistent
with the categorization for this project, another error
analyst may have interpreted the categories differently.

Failure to initialize or reinitialize a data structure
properly upon a module's ent ry /exi t is considered an
initialization error. Errors that cause an "incorrect path"
in a module to be taken are considered control errors.
Such a control error might be a conditional statement
causing control to be passed to an incorrect path. Inter-
face errors are those that were associated with struc-
tures existing outside the module's local environment
but which the module used. For example, the incorrect
declaration of a COMMON segment or an incorrect
subroutine call is an interface error. An error in the
declaration of the COMMON segment is considered an
interface error and not an initialization error since the
COMMON segment has been used by the module but is
not part of its local environment. Data errors are those
errors that are a result of the incorrect use of a data
structure• Examples of data errors are the use of incor-
rect subscripts for an array, the use of the wrong varia-
ble in an equation, or the inclusion of an incorrect
declaration of a variable local to the module. Computa-
tion errors are those that cause a computation to erro-

(,n

a,-

IL
0

W
m

z

70 .

50-

1 0 .

NEW
MOD
COMB

o NEW MODULES 4

• " ~ MODIFIED
: "'" ~ MODULES

: 1 4 ~ ~. "..

• / \ ".
, / • " .

• / \ •.

: 1 \ ""
: 1 \ "

:1 ',~ "e
,

j ~
b

w Te 1 79 .;eo
tO 54 40 9
I0 6 7 I I 14

121 51 23

FIGURE 5. Number of Errors Occurring in Modules

neously evaluate a variable's value. These errors could
be equations that are incorrect not by virtue of the
incorrect use of a data structure within the statement
but by miscalculations• An example of this error might
be the statement A = B + 1 when the statement really
needed was A = B / C + 1.

These five abstract categories basically represent all
activities present in any module. The five categories are
further partitioned into errors of commission and omis-
sion. Errors of commission are those errors present as a
result of an incorrect executable statement. For exam-
ple, a commissioned computational error would be A =
B * C where the '*' should have been '+'. In other
words, the operator was present but was incorrect. Er-
rors of omission are those errors that are a result of
forgetting to include some entity within a module• For
example, a computational omission error might be A =
B when the statement should have read A = B + C. A
parameter required for a subroutine call but not in-
cluded in the actual call is an example of an interface
omission error• In both of the above examples some
aspect needed for the correct execution of a module has
been forgotten.

The results of this abstract classification scheme are
given in Table VI. Since there were approximately an
equal amount of new (49) and modified (47) modules
viewed in the analysis, the results do not need to be
normalized. Some errors and thereby modules were
counted more than once, since it was not possible to
associate some errors with a single abstract error type
based on the error description given on the change re-
port form.

According to Table VI, interfaces appear to be the
major problem, regardless of the module type. Control
is more of a problem in new modules than in modified
modules. This is probably because the algorithms in the
old modules had more test and debug time. On the
other hand, initialization and data are more of a prob-
lem in modified modules. These facts, coupled with the
small number of errors of omission in the modified

January 1984 Volume 27 Number 1 Communications of the ACM 47

Computing Practices

TABLE VI. Abstract Classification of Errors

Commission Omission Total

New Modified New Modified New Modified

Initialization 2 9 5
Control 12 2 16
Interface 23 31 27
Data 10 17 1
Computation 16 21 3

28% 36% 23%

64% 35%

9 7 18-25(11%)
6 28 8-36(16%)
6 50 37-87(39%)
3 11 20-31(14%)
3 19 24-43(19%)

12% 115 107

modules, might imply that the basic algorithms for the
modified modules were correct but needed some ad-
justment with respect to data values and init ialization
for the application of that algorithm to the new envi-
ronment.

3.6 Module Size and Error Occurrence
Scatter plots for executable lines per module versus the
number of errors found in the module were graphed. It
was difficult to see any trend within these plots, so the
number of errors/1000 executable lines within a mod-
ule size was calculated (Table VII). The number of er-
rors was normalized over 1000 executable lines of code
in order to determine if the number of detected errors
within a module was dependent on module size. All
modules within the software were included, even those
with no detected errors. If the number of errors/1000
executable lines was found to be constant over module
size, this would show independence. An unexpected
trend was observed: Table VII implies that there is a

TABLE VII. Errors/lO00 Executable Lines (Includes all modules)

Module Errors/lO00
Size Lines

50 16.0
100 12.6
150 12.4
200 7.6

>200 6.4

TABLE VIII. Average Cyclomatic Complexity for all Modules

Average
Module Cyclomatic

Size Complexity

50 6.0
100 17.9
150 28.1
200 52.7

>200 60.0

higher error rate in smaller sized modules. Since only
the executable lines of code were considered, the larger
modules were not COMMON data files. Also the larger
modules will be shown to be more complex than
smaller modules in the next section. Then how could
this type of result occur?

The most plausible explanat ion seems to be that the
large number of interface errors spread equally across
all modules is causing a larger number of errors per
1000 executable statements for smaller modules. Some
tentative explanations for this behavior are that: the
majori ty of the modules examined were small (Table I),
causing a biased result; larger modules were coded
with more care than smaller modules because of their
size; and errors in smaller modules were more appar-
ent. There may still be numerous undetected errors
present within the larger modules since all the "paths"
within the larger modules may not have been fully
exercised.

3.7 Module Complexity
Cyclomatic complexi ty [8] (number of decisions + 1)
was correlated with module size. This was done in or-
der to determine whether or not larger modules were
less dense or complex than smaller modules containing
errors. Scatter plots for executable statements per mod-
ule versus the cyclomatic complexi ty were graphed.
Since it was difficult to see any t rend in the plots,
modules were grouped according to size. The complex-
ity points were obtained by calculating an average com-
plexity measure for each module size class. For exam-
ple, all the modules that had 50 executable lines of
code or less had an average complexi ty of 6.0. Table
VIII gives the average cyclomatic complexi ty for all
modules in each of the size categories. The complexi ty
relationships for executable lines of code in a module
are shown in Figure 6. As can be seen from Table VIII,
the larger modules were more complex than smaller
modules.

Table IX gives the number of errors/1000 executable
statements and the average cyclomatic complexi ty only
for those modules containing errors. When these data
are compared with Table VIII, one can see that the

Communications of the ACM January 1984 Volume 27 Number 1

Computing Practices

average complexity of the error-prone modules was no
greater than the average complexi ty of the full set of
modules.

4. DATA NOT EXPLICITLY INCLUDED IN
ANALYSES

The 147 modules not included in this s tudy (i.e., assem-
bly segments, common segments, uti l i ty routines) con-
tained six errors. These six errors were detected within
three different segments. One error occurred in a modi-
fied assembly module because of a misunderstanding or
incorrect statement of the functional specifications for
the module. The effort needed to correct this error was
minimal (1 hour or less).

The other five errors occurred in two separate new
data segments with the major cause of the errors also
being related to their specifications. The effort needed
to correct these errors was on the average from 1 hour
to I day (1 day representing 8 hours).

o 70 ="

=,J

404

go ,6o ,go a6o
MODULE SIZE

FIGURE 6. Complexity versus Module Size

5. CONCLUSIONS
The data contained in this paper help explain and char-
acterize the software developed. It is clear from the
data that this was a new application for the developers,
with changing requirements.

Modified and new modules were shown to behave
similarly except for the types of errors prevalent in
each and the amount of effort required to correct an
error. Both had a high percentage of interface errors.
However, new modules had an equal number of errors
of omission and commission and a higher percentage of
control errors. Modified modules had a high percentage
of errors of commission and a small percentage of errors
of omission with a higher percentage of data and initial-
izatian errors. Another difference was that modified
modules appeared to be more susceptible to errors due
to the misunderstanding of the specifications. Misun-
derstanding of a module 's specifications or require-
ments consti tuted the majori ty of detected errors. This
duplicates Endres' earl ier result, which implies that
more work needs to be done on the form and content of
the specifications and requirements in order for them
to be used more effectively across applications.

There are some disadvantages to modifying an exist-

TABLE IX. Complexity and Error Rate for Errored Modules

Average Errora/lO00
Module Cyclomatic Executable

Size Complexity Lines

50 6.2 65.0
100 19.6 33.3
150 27.5 24.6
200 56.7 13.4

>200 77.5 9.7

ing module for use instead of creating a new module.
Modifying an existing module to meet a similar but
different set of specifications reduces the development
costs of that module. However, the disadvantage is that
there are hidden costs. Errors contained in modified
modules were found to require more effort to correct
than those in new modules, although the two classes
contained approximately the same number of errors.
The majority of these errors were because of incorrect
or misinterpreted specifications for a module. There-
fore, there is a trade-off between minimizing develop-
ment time and time spent to align a module to new
specifications. However, if better specifications could be
developed, it might reduce the more expensive errors
contained within modified modules. In this case, the
use of "old" modules could be more beneficial in terms
of cost and effort since the hidden costs would have
been reduced.

One surprising result was that module size did not
account for error proneness. In fact, it was quite the
con t ra ry - - the larger the module, the less error prone it
was. This was true even though the larger modules
were more complex. Additionally, the error-prone
modules were no more complex across size grouping
than the error-flee modules. This result implies we are
not yet ready to put artificial limits on module size and
complexity.

In general, error analysis provides useful information.
For this project, it shows that the developers were in-
volved in a new application with changing require-
ments. It provides insight into the different ways of
handling new and modified modules. It shows areas of
potential problems with a new application. It ul t imately
allows us to identify the various factors that influence
software development.

January 1984 Volume 27 Number I Communications of the ACM 49

Computing Practices

APPENDIX--Change Report Form

PROJECT NAME CURRENT DATE

SECTION A - IOENTIFICATIOI~

REASON: Why was the change made?

DESCRIPTION: What change was made?_

EFFECT: What components (or documents) are changed? (Include version)

EFFORT: What additional components (or documents) were examined in determining what change was needed?

(Month Day Year)

What was the effort in person time required to understand and implement the change?

1 hour or less, _ _ ~ 1 hour to 1 day, 1 da~ to 3 days, more than 3 days

SECTION B - TYPE OF CHAN(3E (How is this change best characterized?)

[] Error correction

[] Planned enhancement

F-I Implementation of requirements change

I-~ Improvement of clarity, maintainability, or documentation

[] Improvement of user services

Was more than one compOnent affected by the change? Yes

D Insertion/deletion of debug code

[] Optimization of time/space/accuracy

[] Adaptation to environment change

[] Other (Explain in E)

No

FOR ERROR CORRECTIONS ONLY

SECTION C - TYPE OF ERROR (How is this error best characterized?)

[] Requirements incorrect or misinterpreted [] Misunderstanding of external environment, except language

[] Functional specifications incorrect or misinterpreted D Error in use of programming language/compiler

I_._ Oesign error, involving several components [] Clerical error

Error in the design or implementation of a single component D Other (Explain in E)

FOR DESIGN OR IMPLEMENTATION ERRORS ONLY

If the error was in design or implementation"

The error was a mistaken assumption about the value or structure of data

The error was a mistake in control logic or computation of an expression

580-2 (6/78)

50 Communications of the ACM January 1984 Volume 27 Number 1

Computing Practices

APPENDIX--Change Report Form

FOR ERROR CORRECTIONS ONLY

SECTION D - VALIDATION AND REPAIR

What activities were used to validate the program, detect the error, and find its cause?

Pre-acceptance test runs

Acceptance testing
Posvacceptance use
Inspection of output

Code reading by programmer

Code reading by other person
!Talks with other programmers

Special debug code

I System error messages
; Project specific error messages

i Reading documentation
Trace

Dump
Cross-reference/attribute list

Proof technique
Other (Explain in E)

Activities
Used for
Program

Validation

Activities
Successful

in Detecting
Error Symptoms

Activities
Tried to

Find
Cause

Activities
Successful
in Finding

Cause

What was the time used to isolate the cause?

_ _ o n e hour or less, _ _ o n e hour to one day, _ _

If never found, was a workaround used? Yes

Was this error related to a previous change?

_ _ Y e s (Change Report #/Date_ No

When did the error enter the system?

__requ i rements functional specs

more than one day, ~ n e v e r found

No (Explain in E)

_ _ C a n ' t tell

design ~ c o d i n g and test ~ o t h e r can't tell

SECTION E - ADDITIONAL INFORMATION

Please give any information that may be helpful in categorizing the error or change, and understanding its cause and its
ramifications.

Name: Authorized: Date:

5ao-2 (6/7e)

january 1984 Volume 27 Number 1 Communications of the ACM 51

Computing Practices

T h e r e s u l t s o f t h i s s t u d y a r e b y no m e a n s c o n c l u s i v e .

T h e y p o s e m o r e q u e s t i o n s t h a n t h e y a n s w e r ; t h e y s u g -

ges t t h a t s o f t w a r e d e v e l o p m e n t m u s t be b e t t e r u n d e r -

s tood . M o r e d a t a m u s t be c o l l e c t e d o n d i f f e r e n t p ro j -

ec ts .

A c k n o w l e d g m e n t s . T h e a u t h o r s w o u l d l ike to t h a n k

F. M c G a r r y , N A S A G o d d a r d S p a c e F l i g h t C e n t e r , for h i s

c o o p e r a t i o n in s u p p l y i n g t h e i n f o r m a t i o n n e e d e d for

t h i s s t u d y a n d h i s h e l p f u l s u g g e s t i o n s o n e a r l i e r d r a f t s
o f t h i s p a p e r .

REFERENCES
1. Basili, V., and Freburger, K. Programming measurement and estima-

tion in the Software Engineering Laboratory. The Journal of Systems
and Software 2, 1 (Mar. 1981), 47-57.

2. Basili, V., and Weiss, D. A methodology for collecting valid software
engineering data. University of Maryland Tech. Rep. TR-1235, Dec.
1982.

3. Basili, V., and Weiss, D. Evaluating software development by analy-
sis of changes: The data from the Software Engineering Laboratory.
University of Maryland Tech. Rep, TR-1236, Dec. 1982.

4. Belady, L. A., and Lehman, M. M. A model of large program devel-
opment. IBM Systems Journal 15, 3 (1976), 225-251.

5. Endres, A. An analysis of errors and their causes in system pro-
grams. In Proceedings of the International Conference on Software Engi-
neering. (April 1975), pp. 327-336.

6. McCabe, T. J. A complexity measure. 1EEE Transactions on Software

Engineering SE-2, 4 (Dec. 1976), 308-320.
7. Mendenhall, W., and Ramey, M. Statistics for Psychology. Duxbury

Press, North Scituate, Mass., 1973, pp. 280-315.
8. Schneidewind, N. F. An experiment in software error data collec-

tion and analysis. IEEE Transactions on Software Engineering SE-5, 3
(May 1979), 276-286.

9. Weiss. D. M. Evaluating software development by error analysis:
The data from the architecture research facility. The Journal of Sys-
tems and Software 1, 1 (Mar. 1979), 57-70.

CR Categories and Subject Descriptors: D.2.8 [Software Engineer-
ing]: Metrics

General Terms: Experimentation, Measurement, Reliability
Additional Key Words and Phrases: error analysis, complexity

metrics

Received 10/82; revised 6/83; accepted 7/83

The research for this study was supported in part by the National Aero-
nautics and Space Administration grant NSG-5123 to the University of
Maryland.

Authors' Present Address:
V. R. Basili and B. T. Perricone, Dept. of Computer Science, University
of Maryland, College Park, Maryland 20742

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Corrigendum. In the Computing Practices article
"Estimating File Access Time of Floppy Disks" by M.
A. Pechura and J. D. Schoeffler [October 1983, pp.
754-763], Figures I and 2 appeared without their
respective legends. The corrected figures appear
below.

SEQUENTIAL
SECTORS

INTERLEAVED
SECTORS

FIGURE 1. Sector Interleaving

A 1600-

1400,-I Random writ....._.ee

600-
Random Read

_ h a, wr,,e A

200- sad

0 200 400 600 800 1000 1200 1400 1600
Number of Sectors in the File

FIGURE 2. Measurement of basic model parameters TRS 80
Model II

52 Communications of the ACM January 1984 Volume 27 Number 1

