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data collected during development of a medium-scale software project 
produces some surprising insights into the factors influencing software 
development. Among these are the tradeoffs between modifying an existing 
module as opposed to creating a new one, and the relationship between 
module size and error proneness. 
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1. INTRODUCTION 
The identification of the various factors that have an 
effect on software development is of prime concern to 
software engineers. The specific focus of this paper is to 
analyze the relationships between the frequency and 
distribution of errors during software development, the 
maintenance of the developed software, and a variety 
of environmental factors. These factors include the 
complexity of the software, the developer's experience 
with the application, and the reuse of existing design 
and code. Such relationships can provide an insight 
into the characteristics of computer software and the 
effects that an environment can have on the software 
product. Such relationships can also improve the relia- 
bility and quality with respect to computer software. In 
an effort to acquire knowledge of these basic relation- 
ships, change data for a medium-scale software project 
were analyzed. (Change data include any documenta- 
tion that reports an alteration made to the software for 
a particular reason.) 

The overall objectives of this paper are threefold: 
first, to report the results of the analyses; second, to 
review the results in the context of those reported by 
other researchers [2, 3, 5, 6]; third, to draw some con- 
clusions based on the first two objectives. The analyses 
presented in this paper encompass various types of dis- 
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tributions based on the collected change data. The most 
important are the error distributions observed within 
the software project. 

1.1 Description of the Environment 
The software analyzed in this paper is from a large set 
of projects being studied in the Software Engineering 
Laboratory (SEL). This particular project is a general- 
purpose program for satellite planning studies. These 
planning studies include mission maneuver planning, 
mission lifetime, mission launch, and mission control. 
The overall size of the software project was approxi- 
mately 90,000 lines of code. The majority of the soft- 
ware project was coded in Fortran for execution on an 
IBM 360. 

Although the system outlined here uses many algo- 
rithms similar to those of the original SEL projects, it 
still represents a new application for the development 
group. 

The requirements for the system kept growing and 
changing, much more so than for the typical ground- 
support software. Owing to the commonality of algo- 
rithms from existing systems, the developers reused the 
design and code for many algorithms needed in the 
new system. Hence a large number of reused (modified) 
modules became part of the new system. 

An approximation of the software's life cycle is dis- 
played in Figure 1. This figure only illustrates the ap- 
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FIGURE 1. Life Cycle of Analyzed Software 

proximate duration in time of the various phases of the 
software's life cycle. The information relating the 
amount of manpower  involved with each of the phases 
was not specific enough to yield meaningful results, so 
it was not included. 

1.2 Terms 
This section defines the terms used in this paper. Please 
note that many of these terms often denote different 
concepts in the general literature. 

Module: A module is defined as a named subfunction, 
subroutine, or the main program of the software sys- 
tem. Only segments that contained executable code 
writ ten in Fortran were used for the analyses. Change 
data from the segments that constituted the data blocks, 
assembly segments, common segments, or utility rou- 
tines were not included. However, a general overview 
of the data available on these segments is presented in 
Section 4. 

There are two types of modules referred to in this 
paper. The first type is denoted as modified. These are 
modules that were developed for previous software 
projects and then modified to meet the requirements of 
the new project. The second type is referred to as new. 
These are modules that were developed specifically for 
the software project under  analysis. 

The entire software project contained 517 code seg- 
ments, comprised of 36 assembly segments, 370 Fortran 
segments, and 111 segments that were either common 
modules, block data, or utility routines. Three hundred 
seventy out of 517 code segments (72 percent of the 
total modules) met the adopted module definition and 
constituted the majori ty of the software project. Of the 
modules found to contain errors, 49 percent were cate- 
gorized as modified and 51 percent as new modules. 

Number of Source and Executable Lines: The number  of 
source lines within a module refers to the number  of 
lines of executable code and comment lines contained 
within it. The number  of executable lines within a 

module refers to the number  of executable statements; 
comment lines are not included. 

Some of the relationships presented in this paper are 
based on a grouping of modules by module size in in- 
crements of 50 lines. This means that a module con- 
taining 50 lines of code or less was placed in the mod- 
ule size of 50, modules between 51 and 100 lines of 
code into the module size of 100, and so on. The num- 
ber of modules contained in each module size category 
is given in Table I for all modules and for modules that 
contained errors (i.e., a subset of all modules) with re- 
spect to source and executable lines of code. 

Error: An error is something detected within the exe- 
cutable code that caused the module in which it oc- 
curred to perform incorrectly (i.e., contrary to its ex- 
pected function). 

Errors were quantified from two viewpoints, depend- 
ing upon the goals of the error analysis. The first quan- 
tification was based on a textual  rather than a concep- 
tual viewpoint. This type of error quantification is best 
i l lustrated by an example. If a " ."  is incorrectly used in 
place of a "+," then all occurrences of the "*" will be 
considered an error, even if the "*"s appear on the 
same line of code or within mult iple modules. The total 
number  of errors detected in the 370 software modules 
was 215 contained within a total of 96 modules. This 
implies that 26 percent of the modules analyzed con- 
tained errors. 

The second type of quantification measured the ef- 
fect of an error across modules. Textual errors associ- 
ated with the same conceptual problem were combined 
to yield one conceptual error. If a procedure was called 
with the same incorrect parameter  list in mult iple mod- 
ules, this would constitute mult iple textual errors but 
only one conceptual error. This is done only for the 
errors reported in Table II. There are a total of 155 
conceptual errors. All other studies in this paper are 
based upon the first type of error quantification. 

Statistical Terms and Methods: All l inear regressions of 
the data presented in this paper employ the least 

TABLE I. Module Size Categories 

Number All Modules Modules with Errors 
of 

Lines Source Executable Source Executable 

0-50 53 258 3 49 
51-100 107 70 16 25 

101-150 80 26 20 13 
151-200 56 13 19 7 
201-250 34 1 12 1 
251-300 14 1 9 0 
301-350 7 1 4 1 
351-400 9 0 7 0 

>400 10 0 6 0 

Total 370 370 96 96 
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squares principle as a criterion of goodness. (That is, 
"choose as the 'best-fitting' line the one that minimizes 
the sum of squares of the deviations of the observed 
values of y from those predicted." [7]) 

Pearson's product moment  coefficient of correlation 
was used as an index of the strength of the l inear rela- 
tionship, regardless of the respective scales of measure- 
ment  for y and x. This index is denoted by the symbol 
r. The measure for the amount  of variabil i ty in y ac- 
counted for by l inear regression on x is denoted 
as r2. 

All of the equations and explanations for these statis- 
tics can be found in [7]. It should be noted that other 
types of curve fits were conducted on the data. The 
results of these fits will be ment ioned later in the pa- 
per. 

2. BASIC DATA 
The change data were collected over a period of 33 
months (August 1977-May 1980). These dates corre- 
spond in time to the software phases of coding, testing, 
acceptance, and maintenance (Figure 1). The data col- 
lected for the analyses are not complete since changes 
were still being made to the analyzed software. How- 
ever, enough data were viewed in order to make the 
conclusions drawn from the data significant. 

The change data were entered on detai led report 
sheets, which were completed by the programmer re- 
sponsible for implement ing the change. A sample of the 
change report form is given in the Appendix.  In gen- 
eral, the form required that several short questions be 
answered by the programmer implement ing the 
change. These queries documented the cause of a 
change in addit ion to other characterist ics and effects 
at t r ibuted to the change. The majori ty of this informa- 
tion was found useful in the analyses. The key informa- 
tion used from the form was: 

• The data of the change or error discovery. 
• The description of the change or error. 
• The number  of components changed. 
• The type of change or error. 
• The effort needed to correct the error. 

It should be ment ioned that the part icular  change 
report form shown in the Appendix is the most current  
form but  was not uniformly used over the entire period 
of this study. In actuali ty there were three different 
versions of the change report  form; each form required 
slightly different information. Therefore, for the data 
that were not present on one form but  that could be 
inferred, the inferred value was used. An example of 
such an inference is that of determining the error type. 
Since the error description was given on all of the 
forms, the error type could be inferred with a reasona- 
ble degree of reliability. Data not incorporated into a 
part icular  data set used for an analysis were data for 
which inference was deemed unreliable.  Therefore, the 
reader should be alert  to the cardinali ty of the data set 

used as a basis for some of the relationships presented 
in this paper. A total of 231 change report  forms were 
examined for the purpose of this paper. 

The quali ty of the change and error data was 
checked in the following manner.  First, the supervisor 
of the project looked over the change report  forms and 
verified them (denoted by his or her  signature and the 
date). Second, when the data were reduced for analysis, 
they were closely examined for contradictions. It 
should be noted that interviews with the individuals  
who filled out the change forms were not conducted. 
This was the major difference between this work and 
other error studies performed by the SEL, where  inter- 
views were held with the programmers to help clarify 
questionable data. [2] 

The review of the change data yielded an interesting 
result. The errors due to previous correction attempts 
were shown to be three times as common after the 
form review process was performed, that is, before the 
review process they accounted for 2 percent  of the er- 
rors and after the review process they accounted for 6 
percent  of the errors. These recording errors are proba- 
bly at tr ibuted to the fact that the corrector of an error 
did not know the error was due to a previous fix be- 
cause the fix occurred several months earl ier  or was 
made by a different programmer.  

3. RELATIONSHIPS DERIVED FROM DATA 
This section presents and discusses the relationships 
derived from the change data. 

3.1 Change Distribution by Type 
Changes to the software can be categorized as error 

TABLE II. Number of Modules Affected by an Error 
(data set: 211 textual errors; 174 conceptual errors) 

Number Number of 
of Modules 

Errors Affected 

155 (89%) 1 
9 2 
3 3 
6 4 
1 5 

TABLE III. Number of Errors per Module (data set: 215 errors) 

Number of Number of Errors 
Modules New Modified per Module 

36 17 19 1 
26 13 13 2 
16 10 6 3 
13 7 6 4 
4 1"* 3* 5 
1 1"* 7 
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TABLE IV. Effort to Correct Errors in the Three Most Error-Prone 
Modified Modules 

Average 
Number of Effort to 

Errors Correct 
(15 total) (hrs) 

Misunderstood or incorrect specifica- 8 24.0 
tions 

Incorrect design or implementation of a 5 16.0 
module component 

Clerical error 2 4.5 

TABLE V. Effort to Correct Errors in the Two Most Error-Prone 
New Modules 

Average 
Number of Effort to 

Errors Correct 
(12 total) (hrs) 

Misunderstood or incorrect require- 8 32 
ments 

Incorrect design or implementation of a 3 0.5 
module component 

Clerical error 1 0.5 

corrections or modifications (specification changes, 
planned enhancements,  and clarity and optimization 
improvements). For this project, error corrections ac- 
counted for 62 percent of the changes and modifica- 
tions accounted for 38 percent. In studies of other SEL 
projects, error corrections accounted for 40-64 percent 
of the changes. 

3.2 Error Distribution by Modules 
Table II shows the number  of modules that had to be 
changed because of an error. (Note that these errors are 
counted as conceptual errors.) It was found that 89 per- 
cent of the errors could be corrected by changing only 
one module. This is a good argument for the modulari ty  
of the software. It also shows that there is not a large 
amount of in terdependence among the modules with 
respect to an error. 

Table III shows the number  of errors found per mod- 
ule. The type of module is shown in addit ion to the 
total number  of modules found to contain errors. 

The largest number  of errors found were 7 (located in 
a single new module) and 5 (located in 3 different mod- 
ified modules and 1 new module). The remainder  of the 
errors were distr ibuted almost equally between the two 
types of modules. 

The effort associated with correcting an error is spec- 
ified on the form as (1) 1 hour or less, (2) 1 hour to 1 
day, (3) 1 day to 3 days, or (4) more than 3 days. These 
categories were chosen because it is too difficult to col- 
lect effort data to a finer granularity. To estimate the 
effort for any part icular  error correction, an average 
time was used for each category; that is, assuming an 8- 
hour day, an error correction in category (1) was as- 
sumed to take 0.5 hour, in category (2) 4.5 hours, in 

category (3) 16 hours, and in category (4) 32 hours. 
The types of errors found in the three most error- 

prone modified modules (* in Table III) and the effort 
needed to correct them is shown in Table IV. If any 
type contained error corrections from more than one 
error correction category, the associated effort for them 
was averaged. The fact that the majori ty of the errors 
detected in a module is between one and three shows 
that the total number  of errors that occurred per mod- 
ule is, on the average, very small. 

The twelve errors contained in the two most error- 
prone new modules (** in Table Ill) are shown in 
Table V along with the effort needed to correct them. 

3.3 Error Distribution by Type 
Figure 2 shows the distr ibution of errors by type. It can 
be seen that 48 percent of the errors was at tr ibuted to 
incorrect or misinterpreted functional specifications or 
requirements.  

The error classification used throughout the Software 
Engineering Laboratory is given below. The person 
identifying the error indicates the class for each error. 

A: Requirements incorrect or misinterpreted.  
B: Functional specification incorrect or misinterpreted.  
C: Design error involving several components. 

1. Mistaken assumption about value or structure of 
data. 

2. Mistake in control logic or computat ion of an 
expression. 

D: Error in design or implementat ion of single compo- 
nent. 
1. Mistaken assumption about value or structure of 

data. 
2. Mistake in control logic or computat ion of an 

expression. 
E: Misunderstanding of external  environment.  
F: Error in the use of programming language/compiler .  
G: Clerical error. 
H: Error due to previous miscorrection of an error. 
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The distribution of these errors by source is plotted 
in Figure 2 with the appropriate subdistribution of new 
and modified errors displayed. This distribution shows 
that the majority of errors were the result of functional 
specification (incorrect or misinterpreted). Within this 
category, the majority of the errors (24 percent) in- 
volved modified modules. This is most likely due to the 
fact that the reused modules were taken from another 
system with a different application. Thus, even though 
the basic algorithms were the same, the specification 
was not well-enough defined or appropriately defined 
for the modules to be used under slightly different cir- 
cumstances. 

The distribution in Figure 2 should be compared to 
the distribution of another system developed by the 
same organization, shown in Figure 3(a) [3]. For a basis 
of comparison, the categories in Figure 2 are mapped 
into a classification scheme [Figure 3(b)] equivalent to 
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those for Figure 3(a) (eliminating the categories of G 
and H within Figure 2). Figure 3 represents a typical 
ground-support software system and was rather typical 
of the error distributions for these systems. It is differ- 
ent from the distribution for the system we are discuss- 
ing in that the majority of the errors were involved in 
the design of a single component. The reason for the 
difference is that in ground-support systems, the design 
is well understood and the developers have had a rea- 
sonable amount of experience with the application. 
Any reused design or code comes from a similar system 
and the requirements tend to be more stable. An analy- 
sis of the two distributions makes the differences in the 
development environments clear in a quantitative way. 

The percent of requirements and specification errors 
is consistent with Endres' work [7]. Endres found that 
46 percent of the errors he viewed involved the misun- 
derstanding of the functional specifications of a mod- 
ule. Our results are similar even though Endres' analy- 
sis was based on data derived from a different software 
project and programming environment. The software 
project used in Endres' analysis contained considerably 
more lines of code per module, was written in assembly 
code, and was within the problem area of operating 
systems. However, both of the software systems Endres 
analyzed did contain new and modified modules. In 
this study, of the errors due to the misunderstanding of 
a module's specifications or requirements (48 percent), 
20 percent involved new modules while 28 percent in- 
volved modified modules. 

Although the existence of modified modules can 
shrink the cost of coding, the amount of effort needed 
to correct errors in modified modules might outweigh 
the savings. The effort graph (Figure 4) supports this 
view: 50 percent of the total effort required for error 
correction occurred in modified modules; errors requir- 
ing one day to more than three days to correct ac- 
counted for 45 percent of the total effort with 27 per- 
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cent of this effort attributable to modified modules 
within these greater effort classes. Thus, errors occur- 
ring in new modules required less effort to correct than 
those in modified modules. 

The similarity between Endres' results and those re- 
ported here tend to support the statement that, inde- 
pendent of the environment  and possibly the module 
size, the majority of errors detected within software are 
due to an inadequate form or misinterpretation of the 
specifications. This seems especially true when the soft- 
ware contains modified modules. 

3.4 Overall Number of Errors Observed 
Figure 5 displays the number  of errors observed in both 
new and modified modules. It can be seen that errors 
occurring in modified modules are detected earlier and 
at a slightly higher rate than those in new modules. 
One hypothesis for this is that the majority of the errors 
observed in modified modules are due to the misinter- 
pretation of the functional specifications. Errors of this 
type would certainly be more obvious since they are 
more blatant than those of other types and, therefore, 
would be detected both earlier and more readily. (See 
next section.) 

3.5 Abs t rac t  Error Types 
The authors adopted an abstract classification of errors 
that classified errors into one of five categories with 
respect to a module: (1) initialization, (2) contral struc- 
ture, (3) interface, (4) data, and (5) computation. This 
was done in order to see if there existed recurring 
classes of errors in all modules, independent  of size. 
These error classes are only roughly defined. It should 
be noted that even though the authors were consistent 
with the categorization for this project, another error 
analyst may have interpreted the categories differently. 

Failure to initialize or reinitialize a data structure 
properly upon a module's ent ry /exi t  is considered an 
initialization error. Errors that cause an "incorrect path" 
in a module to be taken are considered control errors. 
Such a control error might be a conditional statement 
causing control to be passed to an incorrect path. Inter- 
face errors are those that were associated with struc- 
tures existing outside the module's local environment  
but which the module used. For example, the incorrect 
declaration of a COMMON segment or an incorrect 
subroutine call is an interface error. An error in the 
declaration of the COMMON segment is considered an 
interface error and not an initialization error since the 
COMMON segment has been used by the module but is 
not part of its local environment.  Data errors are those 
errors that are a result of the incorrect use of a data 
structure• Examples of data errors are the use of incor- 
rect subscripts for an array, the use of the wrong varia- 
ble in an equation, or the inclusion of an incorrect 
declaration of a variable local to the module. Computa- 
tion errors are those that cause a computation to erro- 
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neously evaluate a variable's value. These errors could 
be equations that are incorrect not by virtue of the 
incorrect use of a data structure within the statement 
but by miscalculations• An example of this error might 
be the statement A = B + 1 when the statement really 
needed was A = B / C  + 1. 

These five abstract categories basically represent all 
activities present in any module. The five categories are 
further partitioned into errors of commission and omis- 
sion. Errors of commission are those errors present as a 
result of an incorrect executable statement. For exam- 
ple, a commissioned computational error would be A = 
B * C where the '*' should have been '+'. In other 
words, the operator was present but was incorrect. Er- 
rors of omission are those errors that are a result of 
forgetting to include some entity within a module• For 
example, a computational omission error might be A = 
B when the statement should have read A = B + C. A 
parameter required for a subroutine call but not in- 
cluded in the actual call is an example of an interface 
omission error• In both of the above examples some 
aspect needed for the correct execution of a module has 
been forgotten. 

The results of this abstract classification scheme are 
given in Table VI. Since there were approximately an 
equal amount of new (49) and modified (47) modules 
viewed in the analysis, the results do not need to be 
normalized. Some errors and thereby modules were 
counted more than once, since it was not possible to 
associate some errors with a single abstract error type 
based on the error description given on the change re- 
port form. 

According to Table VI, interfaces appear to be the 
major problem, regardless of the module type. Control 
is more of a problem in new modules than in modified 
modules. This is probably because the algorithms in the 
old modules had more test and debug time. On the 
other hand, initialization and data are more of a prob- 
lem in modified modules. These facts, coupled with the 
small number  of errors of omission in the modified 
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TABLE VI. Abstract Classification of Errors 

Commission Omission Total 

New Modified New Modified New Modified 

Initialization 2 9 5 
Control 12 2 16 
Interface 23 31 27 
Data 10 17 1 
Computation 16 21 3 

28% 36% 23% 

64% 35% 

9 7 18-25(11%) 
6 28 8-36(16%) 
6 50 37-87(39%) 
3 11 20-31(14%) 
3 19 24-43(19%) 

12% 115 107 

modules, might imply that the basic algorithms for the 
modified modules were correct but needed some ad- 
justment with respect to data values and init ialization 
for the application of that algorithm to the new envi- 
ronment.  

3.6 Module Size and Error Occurrence 
Scatter plots for executable lines per module  versus the 
number  of errors found in the module were graphed. It 
was difficult to see any trend within these plots, so the 
number  of errors/1000 executable lines within a mod- 
ule size was calculated (Table VII). The number  of er- 
rors was normalized over 1000 executable lines of code 
in order to determine if the number  of detected errors 
within a module was dependent  on module size. All 
modules within the software were included,  even those 
with no detected errors. If the number  of errors/1000 
executable lines was found to be constant over module 
size, this would show independence.  An unexpected 
trend was observed: Table VII implies that there is a 

TABLE VII. Errors/lO00 Executable Lines (Includes all modules) 

Module Errors/lO00 
Size Lines 

50 16.0 
100 12.6 
150 12.4 
200 7.6 

>200 6.4 

TABLE VIII. Average Cyclomatic Complexity for all Modules 

Average 
Module Cyclomatic 

Size Complexity 

50 6.0 
100 17.9 
150 28.1 
200 52.7 

>200 60.0 

higher error rate in smaller  sized modules. Since only 
the executable lines of code were considered, the larger 
modules were not COMMON data files. Also the larger 
modules will be shown to be more complex than 
smaller  modules in the next  section. Then how could 
this type of result occur? 

The most plausible explanat ion seems to be that the 
large number  of interface errors spread equally across 
all modules is causing a larger number  of errors per 
1000 executable statements for smaller  modules. Some 
tentative explanations for this behavior  are that: the 
majori ty of the modules examined were small (Table I), 
causing a biased result; larger modules were coded 
with more care than smaller  modules because of their  
size; and errors in smaller  modules were more appar- 
ent. There may still be numerous  undetected errors 
present within the larger modules since all the "paths" 
within the larger modules may not have been fully 
exercised. 

3.7 Module Complexity 
Cyclomatic complexi ty [8] (number of decisions + 1) 
was correlated with module size. This was done in or- 
der to determine whether  or not larger modules were 
less dense or complex than smaller  modules containing 
errors. Scatter plots for executable statements per  mod- 
ule versus the cyclomatic complexi ty  were graphed. 
Since it was difficult to see any t rend in the plots, 
modules were grouped according to size. The complex- 
ity points were obtained by calculating an average com- 
plexity measure for each module size class. For exam- 
ple, all the modules that had 50 executable lines of 
code or less had an average complexi ty  of 6.0. Table 
VIII gives the average cyclomatic complexi ty  for all 
modules in each of the size categories. The complexi ty  
relationships for executable lines of code in a module  
are shown in Figure 6. As can be seen from Table VIII, 
the larger modules were more complex than smaller  
modules. 

Table IX gives the number  of errors/1000 executable 
statements and the average cyclomatic complexi ty  only 
for those modules containing errors. When these data 
are compared with Table VIII, one can see that the 
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average complexity of the error-prone modules was no 
greater than the average complexi ty of the full set of 
modules. 

4. DATA NOT EXPLICITLY INCLUDED IN 
ANALYSES 

The 147 modules not included in this s tudy (i.e., assem- 
bly segments, common segments, uti l i ty routines) con- 
tained six errors. These six errors were detected within 
three different segments. One error occurred in a modi- 
fied assembly module because of a misunderstanding or 
incorrect statement of the functional specifications for 
the module. The effort needed to correct this error was 
minimal  (1 hour or less). 

The other five errors occurred in two separate new 
data segments with the major cause of the errors also 
being related to their  specifications. The effort needed 
to correct these errors was on the average from 1 hour 
to I day (1 day representing 8 hours). 

o 70 =" 

=,J 

404 

go ,6o ,go a6o 
MODULE SIZE 

FIGURE 6. Complexity versus Module Size 

5. CONCLUSIONS 
The data contained in this paper help explain and char- 
acterize the software developed. It is clear from the 
data that this was a new application for the developers, 
with changing requirements.  

Modified and new modules were shown to behave 
similarly except for the types of errors prevalent  in 
each and the amount  of effort required to correct an 
error. Both had a high percentage of interface errors. 
However, new modules had an equal number  of errors 
of omission and commission and a higher percentage of 
control errors. Modified modules had a high percentage 
of errors of commission and a small percentage of errors 
of omission with a higher percentage of data and initial- 
izatian errors. Another  difference was that modified 
modules appeared to be more susceptible to errors due 
to the misunderstanding of the specifications. Misun- 
derstanding of a module 's  specifications or require- 
ments consti tuted the majori ty of detected errors. This 
duplicates Endres'  earl ier  result, which implies that 
more work needs to be done on the form and content of 
the specifications and requirements  in order for them 
to be used more effectively across applications. 

There are some disadvantages to modifying an exist- 

TABLE IX. Complexity and Error Rate for Errored Modules 

Average Errora/lO00 
Module Cyclomatic Executable 

Size Complexity Lines 

50 6.2 65.0 
100 19.6 33.3 
150 27.5 24.6 
200 56.7 13.4 

>200 77.5 9.7 

ing module for use instead of creating a new module. 
Modifying an existing module to meet a similar but 
different set of specifications reduces the development  
costs of that module. However, the disadvantage is that 
there are hidden costs. Errors contained in modified 
modules were found to require more effort to correct 
than those in new modules, although the two classes 
contained approximately the same number  of errors. 
The majority of these errors were because of incorrect 
or misinterpreted specifications for a module. There- 
fore, there is a trade-off between minimizing develop- 
ment  time and time spent to align a module to new 
specifications. However, if better specifications could be 
developed, it might reduce the more expensive errors 
contained within modified modules. In this case, the 
use of "old" modules could be more beneficial in terms 
of cost and effort since the hidden costs would have 
been reduced. 

One surprising result was that module size did not 
account for error proneness. In fact, it was quite the 
con t ra ry - - the  larger the module, the less error prone it 
was. This was true even though the larger modules 
were more complex. Additionally,  the error-prone 
modules were no more complex across size grouping 
than the error-flee modules. This result implies we are 
not yet ready to put artificial limits on module size and 
complexity. 

In general, error analysis provides useful information. 
For this project, it shows that the developers were in- 
volved in a new application with changing require- 
ments. It provides insight into the different ways of 
handling new and modified modules. It shows areas of 
potential problems with a new application. It ul t imately 
allows us to identify the various factors that influence 
software development.  
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APPENDIX--Change Report Form 

PROJECT NAME CURRENT DATE 

SECTION A - IOENTIFICATIOI~ 

REASON: Why was the change made? . . . . .  

DESCRIPTION: What change was made?_ 

EFFECT: What components (or documents) are changed? (Include version) 

EFFORT: What additional components (or documents) were examined in determining what change was needed? 

(Month Day Year) 

What was the effort in person time required to understand and implement the change? 

1 hour or less, _ _ ~ 1  hour to 1 day, 1 da~ to 3 days, more than 3 days 

SECTION B - TYPE OF CHAN(3E (How is this change best characterized?) 

[ ]  Error correction 

[ ]  Planned enhancement 

F-I Implementation of requirements change 

I-~ Improvement of clarity, maintainability, or documentation 

[ ]  Improvement of user services 

Was more than one compOnent affected by the change? Yes 

D Insertion/deletion of debug code 

[ ]  Optimization of time/space/accuracy 

[ ]  Adaptation to environment change 

[ ]  Other (Explain in E) 

No 

FOR ERROR CORRECTIONS ONLY 

SECTION C - TYPE OF ERROR (How is this error best characterized?) 

[ ]  Requirements incorrect or misinterpreted [ ]  Misunderstanding of external environment, except language 

[ ]  Functional specifications incorrect or misinterpreted D Error in use of programming language/compiler 

I_._ Oesign error, involving several components [ ]  Clerical error 

Error in the design or implementation of a single component D Other (Explain in E) 

FOR DESIGN OR IMPLEMENTATION ERRORS ONLY 

If the error was in design or implementation" 

The error was a mistaken assumption about the value or structure of data 

The error was a mistake in control logic or computation of an expression 

580-2 (6/78) 

50 Communications of the ACM January 1984 Volume 27 Number 1 



Computing Practices 

APPENDIX--Change Report Form 

FOR ERROR CORRECTIONS ONLY 

SECTION D - VALIDATION AND REPAIR 

What activities were used to validate the program, detect the error, and find its cause? 

Pre-acceptance test runs 

Acceptance testing 
Posvacceptance use 
Inspection of output 

Code reading by programmer 

Code reading by other person 
!Talks with other programmers 

Special debug code 

I System error messages 
; Project specific error messages 

i Reading documentation 
Trace 

Dump 
Cross-reference/attribute list 

Proof technique 
Other (Explain in E) 

Activities 
Used for 
Program 

Validation 

Activities 
Successful 

in Detecting 
Error Symptoms 

Activities 
Tried to 

Find 
Cause 

Activities 
Successful 
in Finding 

Cause 

What was the time used to isolate the cause? 

_ _ o n e  hour or less, _ _ o n e  hour to one day, _ _  

If never found, was a workaround used? Yes 

Was this error related to a previous change? 

_ _ Y e s  (Change Report #/Date_ No 

When did the error enter the system? 

__requ i rements  functional specs 

more than one day, ~ n e v e r  found 

No (Explain in E) 

_ _ C a n ' t  tell 

design ~ c o d i n g  and test ~ o t h e r  can't tell 

SECTION E - ADDITIONAL INFORMATION 

Please give any information that may be helpful in categorizing the error or change, and understanding its cause and its 
ramifications. 

Name: Authorized: Date: 

5ao-2 (6/7e) 
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T h e  r e s u l t s  o f  t h i s  s t u d y  a r e  b y  no  m e a n s  c o n c l u s i v e .  

T h e y  p o s e  m o r e  q u e s t i o n s  t h a n  t h e y  a n s w e r ;  t h e y  s u g -  

ges t  t h a t  s o f t w a r e  d e v e l o p m e n t  m u s t  be  b e t t e r  u n d e r -  

s tood .  M o r e  d a t a  m u s t  be  c o l l e c t e d  o n  d i f f e r e n t  p ro j -  

ec ts .  

A c k n o w l e d g m e n t s .  T h e  a u t h o r s  w o u l d  l ike  to t h a n k  

F. M c G a r r y ,  N A S A  G o d d a r d  S p a c e  F l i g h t  C e n t e r ,  for  h i s  

c o o p e r a t i o n  in  s u p p l y i n g  t h e  i n f o r m a t i o n  n e e d e d  for 

t h i s  s t u d y  a n d  h i s  h e l p f u l  s u g g e s t i o n s  o n  e a r l i e r  d r a f t s  
o f  t h i s  p a p e r .  
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Corrigendum. In the Computing Practices article 
"Estimating File Access Time of Floppy Disks" by M. 
A. Pechura and J. D. Schoeffler [October 1983, pp. 
754-763], Figures I and 2 appeared without their 
respective legends. The corrected figures appear 
below. 
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